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In this post, we review coding methods in text compression, with the
assumption that the reader has a basic knowledge of data structures and
algorithms, such as heap, prefix tree, and Huffman coding.

1 Background
Compression is a kind of space-time tradeoff technique. A typical application
scenario is the client/server computing, where compression saves storage in
the server and reduce the network transmission, but takes more time on the
client to decompress. Fig. 1 shows a general compression pipeline for text,
where model provides distribution of symbols, and coding determines the
compressed representation, also known as the codeword, of the symbol. For
example, in Huffman coding, the model consists of the probabilities of each
character, and the encoder (decoder) maps the texts (bits) to bits (texts).

There are numbers of modeling and coding methods with different ad-
vantages. To design an appropriate pipeline in a specific scene, we need to
consider three aspects. The first one should be the compression ratio, which
is the bottleneck of space-saving. The second one is the speed of decoding,
which determines how much time we will spend on decompression. The last
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Figure 1: A general pipeline of text compression and restoration [Witten
et al., 1999].
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one is the overhead for decoding individual documents, which is important
for multi-documents situation.

The simplest model that views symbols as independent and static ran-
dom variables is difficult to satisfy the requirements above. There are two
main ways to expand the model. On the one hand, the model can adapt to
the text as the compression incrementally. On the other hand, the model
can consider the distribution with the context. Most of the modern com-
pression softwares utilize two expansions at the same time, e.g., an adaptive
prefix tree is built to store the context dictionary in PDF.

The general idea of coding methods is that the lower the frequency of
symbols, the fewer bits their codewords should occupy. There are two major
classes of coding methods, the Huffman coding, and the arithmetic coding.
In the rest of this post, we first introduce a well-known improvement over
the standard Huffman code, known as canonical Huffman code, and then
discuss the arithmetic code that can achieve a better compression ratio than
Huffman codes in some cases.

2 Canonical Huffman Code
A Huffman code is an optimal prefix code that is widely used in lossless data
compression. However, in standard Huffman coding, the Huffman tree is a
big overhead. On the one hand, it takes much space to store internal nodes
and pointers for the tree structure, especially in situations with many rare
symbols. On the other hand, it is inefficient to jump randomly through the
tree to parse the input bit one by one during decompression.

Note that a Huffman code represents a prefix-free assignment of code-
words where the length of each codeword is equal to the depth of the cor-
responding symbol in a Huffman tree. In other words, there may exist a
regular relabeling method that can achieve a more efficient reassignment.
Canonical Huffman code follow this idea and achieve less storage as well as
faster decompression, where “canonical” means minimual randomness, e.g.,
exchanging the role of 0 and 1, or changing the combination order of nodes
with the same weight leads to a different result but is equally valid. Canon-
ical Huffman code are commonly used in many applications, such as PNG,
JPEG, and MPEG. We describe the process of canonical coding in detail
below.

In the encoding procedure, first of all, symbols are sorted in decreasing
order by the bit length calculated with standard Huffman’s algorithm, where
symbols with the same bit length are sorted lexicographically in increasing
order. We mark the sorted symbols with their bit lengths as {(si, li)}ni=1,
where si is the i-th symbol and li is the corresponding bit length. The
canonization is shown as in Alg. 1. Note that we can further speed up the
first step in the encoding procedure by only calculating depths of nodes
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instead of a whole tree with the help of a min-heap.

Algorithm 1 Encoding symbols by canonical Huffman coding.
1: c1 ← 0 << (l1 − 1)
2: for i = 2, ..., n do
3: ci ← (ci−1 >> (li−1 − li)) + 1
4: end for
5: return {ci}ni=1

There are two obvious properties of canonical Huffman code, which
makes random access and contiguous storage available. The first one is
that codewords with the same length are continuous and incremental nu-
merically. The second one is that for any pair of codewords x and y with
length |x| > |y|, y is greater than arbitrary prefix of x with length |y|. In
the decoding procedure, we can use the second property to know whether
a leaf node is reached, and achieve random access by calculating the offset
with the first property. The decoding algorithm is shown as Alg. 2.

Algorithm 2 Decoding a canonical Huffman code.
1: l← 0
2: v ← readNBits(I[l])
3: while v < F [l] do
4: l← l + 1
5: step← I[l]
6: v ← (v << step) + readNBits(step)
7: end while
8: return S[l][v −F [l]]

As a consequence, we can only store the following three arrays for each bit
length instead of a Huffman tree for decompression. A one-dimensional array
F to store first codewords of bit lengths. A one-dimensional array I to store
gaps between consecutive bit lengths. A two-dimensional array S to store
lexicographically ordered symbols. For example in Table 1, F = [1, 1, 0],
I = [1, 2, 1], and S = [[a], [b, c, d], [e, f ]].

Symbol Standard Huffman code Bit length Canonical Huffman code
a 0 1 1
b 100 3 001
c 101 3 010
d 111 3 011
e 1100 4 0000
f 1101 4 0001

Table 1: An example of canonical Huffman code.
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3 Arithmetic Coding
Consider the text containing two symbols only: a and b with probability
0.999 and 0.001, respectively. By Huffman coding, the expected length of
codeword is 1 which is far less than the entropy of the text. The problem is
that the Huffman codes force the bits of codewords to round up to integers.
The arithmetic coding addresses this issue by aggregating fractional bits.

More precisely, the idea of the arithmetic coding is to encode a string
as a unique real number in [0, 1]. In particular, given symbols {si}ni=1 and
their probabilities {pi}ni=1, we first divide [0, 1] into n subintervals, with the
length of the i-th subinterval equal to pi. Then, we divide each subiterval
in the same way recursively, which just like construct a segment tree from
top to bottom for all possible strings. Lastly, we output arbitrary float
number in the final interval. In decoding procedure, by finding the interval
that the given real number belongs to, we can restore the raw string. It is
obvious that the length of the final subinterval is equal to the product of
the probabilities of the symbols in the string, which is the probability of the
string in the text. Note that we need log n more bits to store the length of
the string, which is necessary for the decoder to know the stopping time.

There are some numerical stability issues in arithmetic coding, e.g., for
infinite strings, we require a float with infinite precision. Next, we start
with a simple example and then discuss these problems with the C++ ex-
ample. For unbounded precision, if the current interval is [0.7530, 0.7599),
it is obvious that the final float number must have the prefix 0.75. As a
result, we can output the longest common prefix of the current interval, i.e.,
0.75, and then consider the rest interval [0.30, 0.99) in the next step. The
implementation of arithmetic coding is shown as follows [Nelson, 2014].

// Input Model
unsigned int[] cumulativeFrequency;
unsigned int totalFrequency;

// Initialization
unsigned int ub = 0xFFFFFFFFU; // $\underbrace{1...1}_{32}$
unsigned int lb = 0; // $\underbrace{0...0}_{32}$
unsigned int b11 = 0xC0000000U; // $11\underbrace{0...0}_{30}$
unsigned int b10 = 0x80000000U; // $1\underbrace{0...0}_{31}$
unsigned int b01 = 0x40000000; // $01\underbrace{0...0}_{30}$
char s;
int cache = 0;

// help function
void output_with_cache(bool bit, int &cache) {

cout << bit;
while (cache--)

cout << !bit;
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}

// Iteration
while (inStream >> s) {

int range = ub - lb + 1;
ub = lb + (range * cumulativeFrequency[s+1]) / totalFrequency;
lb = lb + (range * cumulativeFrequency[s]) / totalFrequency;

while (true) {
if (ub < b10) { // [0xxxx, 0xxxx)

output_with_cache(0);
lb <<= 1;
ub = (ub << 1) | 1; // append precision

} else if (lb >= b10) { // [1xxxx, 1xxxx)
output_with_cache(1);
lb <<= 1;
ub = (ub << 1) | 1; // append precision

} else if (lb >= b01 && ub < b11) {
// [01xxx, 10xxx) this is the case where the ub is closed

to the lb
cache++; // cache the number and then correct the precision
lb = (lb << 1) & 0x7FFFFFFF; // $0\underbrace{1...1}_{31}$
ub = (ub << 1) | 0x80000001; // $1\underbrace{0...0}_{30}1$

} else { // [00xxx, 10xxx) or [00xxx, 11xxx) or [01xxx, 11xxx]
// need a closer lb and ub to determine the common prefix
break;

}
}

}
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