
Notes on the Theory of Machine Learning
Yanhua Huang

Oct 2020

This post reviews some basic machine learning theory. In particular, we
discuss learnability, complexity, generalization, stability, and convergence.

1 What is Learning?
One of the essential things about machine learning is to understand what
is learning for the computer. Following Domingos [8], learning consists of
three components: representation, evaluation and optimization.

Represetation First of all, any learning algorithm or learned result
must be in representation that the computer can handle. Generally, we
expect to learn a mapping, e.g., a mapping from the input image to the
desired label or a mapping from the data point to the meaningful cluster.
Formally, we call the mapping as concept. The collection of concepts we
want to learn is called concept class. Given a learning algorithm, the set
of all possible concepts considered is called hypotheis space. For example,
the decision tree formulates the mapping by a tree structure, and the Naive
Bayes classifier assumes strong (naive) independence between the features.
Given a problem, we wonder if we can learn it and how complicated is
it, corresponding to the learnability (Sec.2) and complexity (Sec.3) in the
machine learning theory.

Evaluation Evaluation is necessary for machine learning. On the one
hand, we want to achieve generalized performance beyond the training data.
Sec.4 will analyze factors, e.g., the hypothesis space’s complexity, that may
influence the generalization. On the other hand, apart from evaluations
like accuracy and recall, it is also necessary to consider the robustness of
the learning procedure and the learned concept, especially when facing the
perturbation and attack in real-world applications. Sec.5 will demonstrate
how to measure the stability of a given learning algorithm.

Optimization Optimization means searching in the hypothesis space
to find the optimal concept corresponding to the evaluation method. Most
of the optimizations in machine learning is an iterative procedure. There
are three fundamental problems for the iteration. Does it converge? Where
is the convergence point? What is the rate of convergence? Moreover,

1

sometimes we optimize a surrogate objective instead of the one produced
by the evaluation method, e.g., minimizing the cross-entropy loss instead of
maximizing the accuracy in classification tasks. We further wonder about
the consistency of the surrogate. Sec.6 tries to answer these questions.

2 Learnability
The well-known learnability theory of machine learning is the Probably
Approximately Correct (PAC) [23]. PAC provides a framework to de-
scribe that the algorithm can learn the correct concept approximately un-
der the perspective of probability. The word ”correct” considers the gen-
eralization error at the most time. Formally, a target concept class C
is PAC-learnable by a hypothesis space H if for any concept c ∈ C,
any target distribution D, and any 0 < ϵ, δ < 1, dataset D consisting of
m = O(poly(1ϵ ,

1
δ , bits(x),bits(c))) i.d.d. samples from D is sufficient for

some algorithms, s.t. the produced h ∈ H satisfies

Pr[L(h|D) ≤ ϵ] ≥ 1− δ,

where L(h|D) = Prx∼D[h(x) ̸= c(x)].
PAC learnable means with polynomial samples, an arbitrarily small error

is achievable with high probability. However, for challenging problems, it
is impossible to achieve small enough error. Consequently, we consider the
smallest error on the whole hypothesis space, resulting in the agnostic PAC
learnable [14] by

Pr[L(h|D)−minh′∈HL(h′|D) ≤ ϵ] ≥ 1− δ.

Note that the complexity of the hypothesis space influences the learnability a
lot. It is straightforward to prove that every finite H is agnostically learnable
with m ∈ O(1

ϵ2
ln |H|

δ) by the Hoeffding inequality. For infinite hypothesis
spaces, it must first know their complexity, as introduced in the next section.

3 Complexity
For finite hypothesis space, it is natural to measure the complexity by its car-
dinality. This section discusses two complexity measures that can be used for
any hypothesis space: the distribution-free method Vapnik-Chervonenkis
(VC) dimension [24], and the distribution-based method Rademacher
complexity [2].

The VC-dimension describes the complexity by the ability to shatter the
data. Formally, denote the restriction of hypothesis space H on dataset D
is

HD = {h(x)|x ∈ D,h ∈ H}.

2

We say a dataset X is shattered by H if |HX | = 2|X|. The VC-dimension of
a hypothesis space H is then given by

V C(H) = max |X|, s.t. X is shattered by H.

Let us consider the VC-dimension of a simple hypothesis space

Hthr = {h(x) = I(x > t)− I(x ≥ t)|t ∈ R}

for one dimensional binary classification problems. It is easy to know its VC-
dimension is not less than 1. Consider D = {a, b} with a < b, any concept in
Hthr can’t achieve {(a, 1), (b,−1)}. As a result, the VC-dimension of Hthr

is 1.
Another notion of complexity is the Rademacher complexity that con-

siders the data distribution and suitable for any real-valued concept (not
only concept mapping to discrete values). The Rademacher complexity is
formally given by

Eσ[sup
h∈H

1

|D|
∑
x∈D

σh(x)],

where σ is random variable uniformly chosen from {−1, 1}. Intuitively, the
Rademacher complexity describes a maximum achievable correlation of the
hypothesis space. In discrete situations, we can view σ as a random label,
and the Rademacher complexity is the hypothesis space’s ability to handle
the desired input signal with random targets.

There are a lot of works about analyzing the complexities of commonly
used hypothesis spaces, such as the VC-dimension of SVM [6] and the
Rademacher complexity of neural networks [4]. Basically, complex spaces
have rich expression but are hard to generalize to the unseen data. We will
discuss this topic in the next section.

4 Generalization
As mentioned in the last section, complexity influences the generalization
well. Commonly used methods for generalization, such as weight decay
and early stopping, are all about controlling the complexity. Given the
produced concept h and the target concept c, we analyze their generalization
performance by decomposing the difference as follows:

L(h)− L(c) = L(h)− L(c̃)︸ ︷︷ ︸
Optimization Error

+ L(c̃)− L(h∗)︸ ︷︷ ︸
Estimation Error

+L(h∗)− L(c)︸ ︷︷ ︸
Modeling Error

,

where c̃ is the optimal concept with respect to the emprical error, h∗ is the
optimal concept in the hypothesis space with respect to the generalization
error.

3

Basically, the hypothesis space’s complexity can trade off between the
modeling error and the optimization error. Furthermore, the complexity also
can provide an upper bound for the estimation error [2, 24]. However, many
works showed that deep nets generalize well despite their high complexity.
[1, 19, 26] tried to explain this phenomenon in other aspects.

5 Stability
In this section, we discuss another aspect of the evaluation for the learning
algorithm, i.e., the stability to handle perturbations. There two perturba-
tions commonly associated with the stability of machine learning algorithms:
sample-level and feature-level perturbation. In particular, for the sample-
level, we consider single sample perturbation on the training dataset, and
for the feature-level, we focus on adversarial noise.

Sample-level perturbation mainly influent the training procedure. As a
result, we can measure the stability as follows:

d := Ei[|L(h|D)− L(h|Di)|],

where Di means the perturbation occurs in the i-th sample of the training
dataset D. Generally, this stability is related to the data size, so we say that
the learning algorithm is stable if it can achieve lim|D|→∞ d = 0. Bousquet
and Elisseeff [5] proved that commonly used learning methods, such as SVM
and least squares regression, hold stability with regularization if the pertur-
bation occurs uniformly. Mukherjee et al. [16] further proved that stability
is sufficient for generalization under empirical risk minimization.

Feature-level perturbation occurs during the inference stage. Although
deep nets achieve great success in many tasks, their instability limits further
applications to security-sensitive fields. Recently, a so-called adversarial
attack that refers to imperceptible input changes for humans to test deep
nets’ stability has aroused wide attention [10]. Formally, we consider the
following risk under adversarial noise:

E[sup
||ξ||<ϵ

I[h(x+ ξ) ̸= h(x)]],

where ϵ is the radius of the noise. Several works viewed this problem un-
der the perspective of generalization and considered the robustness and the
accuarcy at the same time [11, 22, 27].

6 Convergence
In machine learning, it is common to solve an optimization problem:

minL(θ), s.t. some conditions are satisfied,

4

where θ is the parameter of the concept, and L is the loss function. As
mentioned before, when the evaluation objective is hard to optimize directly,
we instead choose L to be a surrogate function with good properties for
optimization. A natural question is whether learning with the surrogate
loss is consistent with learning with the evaluation objective? Formally,
if the surrogate loss’s result converges to the one lead by the evaluation
objective, we say the surrogate loss achieves consistency. Bartlett et al. [3]
provided sufficient and necessary conditions for consistency with accuracy.
Other works further discussed the situations with AUC [9] and NDCG [20].

We then move to the convergence of the iterative procedure. Let θt be
the output parameter in t-th iteration of optimization, and θ∗ be the optimal
parameter in the hypothesis space. We can measure the rate of convergence
as follows:

ρ := lim
t→∞

L(θt+1)− L(θ∗)
L(θt)− L(θ∗)

.

If ρ = 1, we say it achieves a sublinear rate. If ρ ∈ (0, 1), we say it achieves
a linear rate. If ρ = 0, we say it achieves a superlinear rate. Generally,
the analysis for the convergence rate usually needs some assumption on the
mathematical properties of the loss function, such as convex and smooth.
In the rest of this section, we first introduce gradient-based optimization
methods and their convergence rate for convex losses, and then turn into
the nonconvex situation.

The most basic graident-based optimization method is the gradient de-
scent (GD) algorithm. Formally, GD uses the first-order Taylor expansion
to approximate the loss function at the current parameter θt:

L(θ) ≈ L(θt) +∇L(θt)T(θ − θt).

The minimization then becomes a linear optimization problem with update
rule:

θt+1 = θt − η∇L(θt),

where η > 0 is also known as the step size. If η is small enough, then
L(θt+1) ≤ L(θt).

The main disadvantage of GD is that it can only handle unconstrained
and differentiable problems. Projected subgradient methods address this
issue by first using subgradient to surrogate the natural gradient and then
guaranteeing constraints with projection. In detail, for a convex function f ,
we say g is the subgradient of f at x ∈ domf , if for arbitrary y ∈ domf , it
satisfies

f(y) ≥ f(x) + gT(y − x).

For example, arbitrary g ∈ [−1, 1] is the subgraident of f(x) = |x| at x = 0.
Note that the subgradient is a generalization of the gradient for convex
functions. It is easy to prove that the subgradient is unique and equal to
the natural gradient if the natural gradient exists.

5

The Frank-Wolfe algorithm, also known as the conditional gradient method,
improves the efficiency of projected subgradient methods by considering the
constraints W within Taylor expansion:

θt+1 = arg min
θ∈W

∇L(θt)Tθ.

Moreover, the Frank-Wolfe algorithm also proposes to apply exponential
smoothing when updating the parameter to imporve stability.

Nesterov [18] provided a general acceleration method for smooth func-
tion, known as Nesterov acceleration, and further proved that GD with
Nesterov acceleration achieves the fastest convergence rate in the first-order
smooth functions optimization in theory.

Algorithm Assumption Convergence Rate
GD convex & smooth sublinear
GD strong-convex & smooth linear

Projected subgradient convex & Lipschitz continuous sublinear
Projected subgradient convex & smooth sublinear
Projected subgradient strong-convex & smooth linear

Frank-Wolfe convex & Lipschitz continuous sublinear
Frank-Wolfe convex & smooth sublinear
Frank-Wolfe strong-convex & smooth linear

SGD convex & Lipschitz continuous sublinear

Newton’s method is a natural expansion of GD with second-order infor-
mation:

L(θ) ≈ L(θt) +∇L(θt)T(θ − θt) +
1

2
(θ − θt)

T∇2L(θt)(θ − θt).

If the Hessian matrix ∇2L(θt) is positive definite, then the approximation
above is a convex function with the optimal solution

θt+1 = θt − [∇2L(θt)]−1∇L(θt).

Newton’s method provides a more accurate step size adjustment and a faster
convergence rate than first-order methods. However, it introduces more cal-
culations and causes further issues: the Hessian matrix ∇2L(θt) is expensive
and not always positive definite. Quasi-Newton methods address these is-
sues by constructing an iteratively updated postive definite matrix similar
to the Hessian matrix as a replacement. Quasi-Newton methods such as
BFGS and DFP are able to achieve the same convergence rate as Newton’s
method with good initialization.

Stochastic gradient descent (SGD) is a stochastic approximation of GD
that replaces the actual gradient from the entire dataset by the estimation

6

from a randomly selected subset. SGD is extremely efficient for large-scale
datasets. Similar to SGD, we can obtain a vanilla stochastic Quasi-Newton
methods:

θt+1 := θt − ηH̃∇L̃(θt),
where η is the learning rate, the Hessian matrix H̃ and the gradient ∇L̃ are
calculated on the subset of the data. However, this direct method will lead
to high variance, which is harmful to the learning procedure. A similar issue
also occurs in first-order stochastic optimization methods. There is a lot of
research working on variance reduction methods for stochastic optimization,
such as adding regularization [7, 12], or improving sampling strategy [17, 28].

So far we disscussed the convergence rate on convex assumption of the
objective function. One of the difficulty in nonconvex analysis is to identify
the global optimum. For derivate free optimization, it is common to consider
the convergence of performance. Zero-order methods, such as cross entropy
method and Bayesian optimization, demonstrate their efficiency in many
nonconvex problems [21, 25]. For derivate based situations, it is common to
consider a weak convergence condition:

min
t=1,...,T

E||∇L(θ)||2 → 0,

i.e., whether the learning algorithm can reach the zero-gradient stage during
training. Note that the first-order stationary point may be a local minimum
or a saddle point. Lee et al. [15] proved that gradient descent with random
initialization and appropriate step size does not converge to a saddle point.
Kawaguchi [13] showed that every local minimum of arbitrary deep linear
neural network with the squared loss function is a global minimum with
some assumptions on the training data.

References
[1] Sanjeev Arora, Rong Ge, Behnam Neyshabur, and Yi Zhang. Stronger

generalization bounds for deep nets via a compression approach. arXiv
preprint arXiv:1802.05296, 2018.

[2] Peter L Bartlett and Shahar Mendelson. Rademacher and gaussian
complexities: Risk bounds and structural results. Journal of Machine
Learning Research, 3(Nov):463–482, 2002.

[3] Peter L Bartlett, Michael I Jordan, and Jon D McAuliffe. Convexity,
classification, and risk bounds. Journal of the American Statistical
Association, 101(473):138–156, 2006.

[4] Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-
normalized margin bounds for neural networks. In Advances in Neural
Information Processing Systems, pages 6240–6249, 2017.

7

[5] Olivier Bousquet and André Elisseeff. Stability and generalization.
Journal of machine learning research, 2(Mar):499–526, 2002.

[6] Christopher JC Burges. A tutorial on support vector machines for
pattern recognition. Data mining and knowledge discovery, 2(2):121–
167, 1998.

[7] Richard H Byrd, Samantha L Hansen, Jorge Nocedal, and Yoram
Singer. A stochastic quasi-newton method for large-scale optimization.
SIAM Journal on Optimization, 26(2):1008–1031, 2016.

[8] Pedro Domingos. A few useful things to know about machine learning.
Communications of the ACM, 55(10):78–87, 2012.

[9] Wei Gao and Zhi-Hua Zhou. On the consistency of auc pairwise opti-
mization. In IJCAI, pages 939–945. Citeseer, 2015.

[10] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining
and harnessing adversarial examples. arXiv preprint arXiv:1412.6572,
2014.

[11] Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom,
Brandon Tran, and Aleksander Madry. Adversarial examples are not
bugs, they are features. In Advances in Neural Information Processing
Systems, pages 125–136, 2019.

[12] Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent
using predictive variance reduction. In Advances in neural information
processing systems, pages 315–323, 2013.

[13] Kenji Kawaguchi. Deep learning without poor local minima. In Ad-
vances in neural information processing systems, pages 586–594, 2016.

[14] Michael J Kearns, Robert E Schapire, and Linda M Sellie. Toward
efficient agnostic learning. Machine Learning, 17(2-3):115–141, 1994.

[15] Jason D Lee, Max Simchowitz, Michael I Jordan, and Benjamin Recht.
Gradient descent only converges to minimizers. In Conference on learn-
ing theory, pages 1246–1257, 2016.

[16] Sayan Mukherjee, Partha Niyogi, Tomaso Poggio, and Ryan Rifkin.
Learning theory: stability is sufficient for generalization and necessary
and sufficient for consistency of empirical risk minimization. Advances
in Computational Mathematics, 25(1-3):161–193, 2006.

[17] Deanna Needell, Rachel Ward, and Nati Srebro. Stochastic gradient
descent, weighted sampling, and the randomized kaczmarz algorithm.
In Advances in neural information processing systems, pages 1017–1025,
2014.

8

[18] Yurii E Nesterov. A method for solving the convex programming prob-
lem with convergence rate o (1/k^ 2). In Dokl. akad. nauk Sssr, volume
269, pages 543–547, 1983.

[19] Behnam Neyshabur, Zhiyuan Li, Srinadh Bhojanapalli, Yann Le-
Cun, and Nathan Srebro. Towards understanding the role of over-
parametrization in generalization of neural networks. arXiv preprint
arXiv:1805.12076, 2018.

[20] Pradeep Ravikumar, Ambuj Tewari, and Eunho Yang. On ndcg con-
sistency of listwise ranking methods. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, pages
618–626, 2011.

[21] Reuven Rubinstein. The cross-entropy method for combinatorial and
continuous optimization. Methodology and computing in applied prob-
ability, 1(2):127–190, 1999.

[22] Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander
Turner, and Aleksander Madry. Robustness may be at odds with ac-
curacy. arXiv preprint arXiv:1805.12152, 2018.

[23] Leslie G Valiant. A theory of the learnable. Communications of the
ACM, 27(11):1134–1142, 1984.

[24] VN Vapnik and A Ya Chervonenkis. On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability
& Its Applications, 16(2):264–280, 1971.

[25] Ziyu Wang, Masrour Zoghi, Frank Hutter, David Matheson, Nando
De Freitas, et al. Bayesian optimization in high dimensions via random
embeddings. In IJCAI, pages 1778–1784, 2013.

[26] Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and
Oriol Vinyals. Understanding deep learning requires rethinking gener-
alization. arXiv preprint arXiv:1611.03530, 2016.

[27] Hongyang Zhang, Yaodong Yu, Jiantao Jiao, Eric P Xing, Laurent El
Ghaoui, and Michael I Jordan. Theoretically principled trade-off be-
tween robustness and accuracy. arXiv preprint arXiv:1901.08573, 2019.

[28] Peilin Zhao and Tong Zhang. Stochastic optimization with importance
sampling for regularized loss minimization. In international conference
on machine learning, pages 1–9, 2015.

9

